Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38096641

RESUMO

Chemoreception through odorant receptors (ORs), ionotropic receptors (IRs) and gustatory receptors (GRs) represents the functions of key proteins in the chemical ecology of insects. Recent studies have identified chemoreceptors in coleopterans, facilitating the evolutionary analysis of not only ORs but also IRs and GRs. Thus, Cerambycidae, Tenebrionidae and Curculionidae have received increased attention. However, knowledge of the chemoreceptors from Scarabaeidae is still limited, particularly for those that are sympatric. Considering the roles of chemoreceptors, this analysis could shed light on evolutionary processes in the context of sympatry. Therefore, the aim of this study was to identify and compare the repertoires of ORs, GRs and IRs between two sympatric scarab beetles, Hylamorpha elegans and Brachysternus prasinus. Here, construction of the antennal transcriptomes of both scarab beetle species and analyses of their phylogeny, molecular evolution and relative expression were performed. Thus, 119 new candidate chemoreceptors were identified for the first time, including 17 transcripts for B. prasinus (1 GR, 3 IRs and 13 ORs) and 102 for H. elegans (22 GRs, 14 IRs and 66 ORs). Orthologs between the two scarab beetle species were found, revealing specific expansions as well as absence in some clades. Purifying selection appears to have occurred on H. elegans and B. prasinus ORs. Further efforts will be focused on target identification to characterize kairomone and/or pheromone receptors.


Assuntos
Besouros , Receptores Odorantes , Gorgulhos , Animais , Transcriptoma , Simpatria , Perfilação da Expressão Gênica , Besouros/genética , Besouros/metabolismo , Gorgulhos/genética , Filogenia , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Antenas de Artrópodes/metabolismo
2.
Microbiol Res ; 277: 127486, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37742453

RESUMO

Botrytis cinerea and Penicillium expansum produce deterioration in fruit quality, causing losses to the food industry. Thus, plant essential oils (EOs) have been proposed as a sustainable alternative for minimizing the application of synthetic fungicides due to their broad-spectrum antifungal properties. This study investigated the efficacy of five EOs in suppressing the growth of B. cinerea and P. expansum and their potential antifungal mechanisms. EOs of Mentha × piperita L., Origanum vulgare L., Thymus vulgaris L., Eucalyptus globules Labill., and Lavandula angustifolia Mill., were screened for both fungi. The results showed that the EO of T. vulgaris and O. vulgare were the most efficient in inhibiting the growth of B. cinerea and P. expansum. The concentration increase of all EO tested increased fungi growth inhibition. Exposure of fungi to EOs of T. vulgaris and O. vulgare increased the pH and the release of constituents absorbing 260 nm and soluble proteins, reflecting membrane permeability alterations. Fluorescence microscopic examination revealed that tested EOs produce structural alteration in cell wall component deposition, decreasing the hypha width. Moreover, propidium iodide and Calcein-AM stains evidenced the loss of membrane integrity and reduced cell viability of fungi treated with EOs. Fungi treated with EOs decreased the mitochondria activity and the respiratory process. Therefore, these EOs are effective antifungal agents against B. cinerea and P. expansum, which is attributed to changes in the cell wall structure, the breakdown of the cell membrane, and the alteration of the mitochondrial activity.


Assuntos
Óleos Voláteis , Penicillium , Antifúngicos/farmacologia , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Óleos de Plantas/farmacologia , Botrytis
3.
Plants (Basel) ; 12(17)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37687341

RESUMO

2-Ketones are signal molecules reported as plant growth stimulators, but their applications in vegetables have yet to be achieved. Solid lipid nanoparticles (SLNs) emerge as a relevant nanocarrier to develop formulations for the controlled release of 2-ketones. In this sense, seedlings of Lactuca sativa exposed to 125, 375, and 500 µL L-1 of encapsulated 2-nonanone and 2-tridecanone into SLNs were evaluated under controlled conditions. SLNs evidenced a spherical shape with a size of 230 nm. A controlled release of encapsulated doses of 2-nonanone and 2-tridecanone was observed, where a greater release was observed as the encapsulated dose of the compound increased. Root development was strongly stimulated mainly by 2-tridecanone and leaf area (25-32%) by 2-nonanone. Chlorophyll content increased by 15.8% with exposure to 500 µL L-1 of 2-nonanone, and carotenoid concentration was maintained with 2-nonanone. Antioxidant capacity decreased (13-62.7%) in L. sativa treated with 2-ketones, but the total phenol concentration strongly increased in seedlings exposed to some doses of 2-ketones. 2-Tridecanone strongly modulates the enzymatic activities associated with the scavenging of H2O2 at intra- and extracellular levels. In conclusion, 2-ketones released from SLNs modulated the growth and the antioxidant system of L. sativa, depending on the dose released.

4.
Metabolites ; 13(5)2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37233657

RESUMO

Murtilla (Ugni molinae) is a shrub native to Chile that has undergone an incipient domestication process aimed at increasing its productivity. The reduction in intrinsic chemical defenses due to the domestication process has resulted in a decrease in the plant's ability to defend itself against mechanical or insect damage. In response to this damage, plants release volatile organic compounds (VOCs) as a means of defense. To understand how domestication has impacted the production of VOCs in the first offspring of murtilla, we hypothesized that their levels would be reduced due to the induction of mechanical and herbivore damage. To test this hypothesis, we collected VOCs from four offspring ecotypes and three wild relatives of murtilla. We induced mechanical and herbivore damage in the plants and then enclosed them in a glass chamber, where we captured the VOCs. We identified 12 compounds using GC-MS. Our results showed that wild relative ecotypes had a higher VOC release rate of 624.6 µg/cm2/day. Herbivore damage was the treatment that produced the highest release of VOCs, with 439.3 µg/cm2/day in wild relatives. These findings suggest that herbivory triggers defenses through the emission of VOCs, and that domestication has influenced the production of these compounds in murtilla. Overall, this study contributes to bridging the gap in the incipient domestication history of murtilla and highlights the importance of considering the impact of domestication on a plant's chemical defenses.

5.
Artigo em Inglês | MEDLINE | ID: mdl-36649785

RESUMO

Caligus rogercresseyi is an ectoparasitic copepod that negatively affects the salmon farming industry, causing economic losses. To use phytochemicals as feed additives, or other chemicals that could elicit behavioral responses in C. rogercresseyi, the chemosensory recognition process is crucial. Therefore, to establish how C. rogercresseyi recognizes glucosinolates and their derivates isothiocyanates, a chemosensory protein (CSP) described as specific carrier of these chemicals in sea louse (CrogCSP) was identified in this study. The recombinant CSP and its selectivity against different chemical compounds was tested by fluorescence binding assays. Phylogenetic analysis revealed a close relationship among CrogCSP and other reported CSPs. Our results indicate that phenyl isothiocyanate and isophorone exhibited dissociation constants of 4.17 and 4.28 µM of Ki, respectively, indicating affinity over other chemicals, such as fatty acids and sinigrin. Structural findings suggest a unique binding site capable of accept several types of chemicals, similar to what has been reported for crystallized insect CSPs. Finally, this study lays the foundation for a deeper understanding of CSPs in crustaceans and especially in C. rogercresseyi. Likewise, the identification of chemosensory proteins could serve as the first step towards novel semiochemicals discovery to being applied in the sea louse controlling.


Assuntos
Copépodes , Doenças dos Peixes , Ftirápteros , Animais , Filogenia , Ligantes , Doenças dos Peixes/parasitologia
6.
Nat Prod Res ; 37(6): 981-984, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35762366

RESUMO

The possibility of modifying terpene production in plants is a defensive strategy that has been studied in conjunction with their biosynthetic pathways. A biotic factor such as Arbuscular Mycorrhizal Fungi (AMF) could modify terpene production in Trifolium pratense L. In this work, the enzymatic production of monoterpenes in Superqueli INIA cultivar with two AMF was evaluated via HeadSpace-Gas Chromatography (HS-GC). A significant increase of (S)-limonene was found in plants inoculated with Claroideoglomus claroideum as well as with the AMF mix (genera Scutellospora, Acaulospora and Glomus). Moreover, significant increases in other monoterpenes such as (-)-ß-pinene, myrcene, linalool, were observed. Results showed higher monoterpene production capacities in the Superqueli-INIA cultivar, suggesting the participation of monoterpene synthases (MTS). The significant rise of (S)-limonene in red clover plants inoculated with AMF suggests this strategy could be implemented in an agronomical manage for controlling the H. obscurus, the primary pest.


Assuntos
Micorrizas , Trifolium , Micorrizas/metabolismo , Trifolium/metabolismo , Trifolium/microbiologia , Monoterpenos , Limoneno , Fungos/metabolismo , Terpenos/metabolismo , Plantas/metabolismo , Controle de Pragas
7.
Rev. bras. entomol ; 67(3): e20230012, 2023. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1507860

RESUMO

ABSTRACT Perennial ryegrass is one of the most important food sources in animal production. However, several pests affect this crop, and one of the primary control strategies is the symbiotic relationships between ryegrass endophyte fungi. This fungus produces alkaloids that exhibit toxic activity against arthropods. Furthermore, the effect of fungi may extend to higher trophic levels, including predators (spiders and/or insects), decreasing their abundance and diversity. Given the importance of spiders and insects as predators, whether the symbiotic interaction between perennial ryegrass and endophyte fungus reduces the abundance and diversity of predators pose an important question. To address this question, natural enemies in perennial ryegrass were collected and analyzed over a year, and the percentage of endophyte fungus was evaluated by the presence of hyphae from two ryegrass cultivars, Jumbo (E-) and Alto AR1 (E+). We observed an 80% endophyte infection rate for (E+) and 0% for (E-). Moreover, 222 individual spiders corresponding to 10 families were identified in both perennial ryegrasses, including 209 individuals for (E-) and 13 for (E+). The most abundant spider family was Lycosidae, representing 71.17% of the total spiders. In addition, 65 insects were collected, corresponding to 6 families, with Carabidae being the most abundant. Furthermore, the Simpson index indicated the dominance of the family Lycosidae. Overall, spider and insect abundance and diversity were reduced in (E+), suggesting a negative effect of the endophyte on predator populations.

8.
Insects ; 13(12)2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36555053

RESUMO

Odorant-degrading enzymes (ODEs) are proposed to degrade/inactivate volatile organic compounds (VOCs) on a millisecond timescale. Thus, ODEs play an important role in the insect olfactory system as a reset mechanism. The inhibition of these enzymes could incapacitate the olfactory system and, consequently, disrupt chemical communication, promoting and complementing the integrated pest management strategies. Here, we report two novel aldehyde oxidases, AOX-encoding genes GmelAOX2 and GmelAOX3, though transcriptomic analysis in the greater wax moth, Galleria mellonella. GmelAOX2 was clustered in a clade with ODE function, according to phylogenetic analysis. Likewise, to unravel the profile of volatiles that G. mellonella might face besides the sex pheromone blend, VOCs were trapped from honeycombs and the identification was made by gas chromatography-mass spectrometry. Semi-quantitative RT-PCR showed that GmelAXO2 has a sex-biased expression, and qRT-PCR indicated that both GmelAOX2 and GmelAOX3 have a higher relative expression in male antennae rather than female antennae. A functional assay revealed that antennal extracts had the strongest enzymatic activity against undecanal (4-fold) compared to benzaldehyde (control). Our data suggest that these enzymes have a crucial role in metabolizing sex pheromone compounds as well as plant-derived aldehydes, which are related to honeycombs and the life cycle of G. mellonella.

9.
Front Physiol ; 13: 989006, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36148307

RESUMO

The greater wax moth, Galleria mellonella, is a global pest for beehives, doing damage in the larval stage. Although a significant number of studies have reported on larvae and adults, to date no effective pest control has been implemented. In this study, we tested larval resistance to alkaloids from Berberis microphylla, and the objective was to identify enzymes that participate in alkaloid detoxification through enzymatic assays, bioinformatics analysis and qRT-PCR. Findings suggest glutathione-S-transferases (GSTs), from an increased metabolic mechanism, are responsible for alkaloid detoxification rather than cytochrome P450 (CYP), carboxylesterases (CarE). A bioinformatics analysis from transcriptome data revealed 22 GSTs present in both G. mellonella larvae and adults. The qRT-PCR experiments corroborated the presence of the 22 GSTs in larvae, where GST8 and GST20 stood out with the highest expression after berberine treatment. Structural information around GST8 and GST20 suggests that GST8 could bind berberine stronger than GST20. These findings represent an important advance in the study of detoxification enzymes in G. mellonella, expanding the role of delta-class GSTs towards alkaloids. Likewise, GST inhibition by alkaloid analogs is proposed in the framework of integrated pest management strategies.

10.
Front Physiol ; 13: 924750, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36072856

RESUMO

Nowadays, insect chemosensation represents a key aspect of integrated pest management in the Anthropocene epoch. Olfaction-related proteins have been the focus of studies due to their function in vital processes, such ashost finding and reproduction behavior. Hence, most research has been based on the study of model insects, namely Drosophila melanogaster, Bombyx mori or Tribolium castaneum. Over the passage of time and the advance of new molecular techniques, insects considered non-models have been studied, contributing greatly to the knowledge of insect olfactory systems and enhanced pest control methods. In this review, a reference point for non-model insects is proposed and the concept of model and non-model insects is discussed. Likewise, it summarizes and discusses the progress and contribution in the olfaction field of both model and non-model insects considered pests in agriculture.

11.
Nanomaterials (Basel) ; 12(13)2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35807973

RESUMO

The antimicrobial activity of metal nanoparticles obtained by biogenic routes has been extensively reported. However, their combined use with other antimicrobial formulations, such as essential oils, remains scarcely explored. In this work, a manganese-ferrite/silver nanocomposite (MnFe2O4/Ag-NC) was synthesized in a two-step procedure: first, MnFe2O4 nanoparticles were produced by a coprecipitation method, followed by in situ biogenic reduction of silver ions using Galega officinalis. MnFe2O4/Ag-NC was characterized using transmission electron microscopy (TEM), scanning electron microscopy equipped with an energy dispersive X-ray analyzer (SEM-EDX), and a vibrating sample magnetometer (VSM-SQUID). The antibacterial activity if MnFe2O4/Ag-NC was evaluated against Pseudomonas syringae by determining its minimum inhibitory concentration (MIC) in the presence of two essential oils: eucalyptus oil (EO) and garlic oil (GO). The fractional inhibitory concentration (FIC) was also calculated to determine the interaction between MnFe2O4/Ag-NC and each oil. The MIC of MnFe2O4/Ag-NC was eightfold reduced with the two essential oils (from 20 to 2.5 µg mL-1). However, the interaction with EO was synergistic (FIC: 0.5), whereas the interaction with GO was additive (FIC: 0.75). Additionally, a time-kill curve analysis was performed, wherein the MIC of the combination of MnFe2O4/Ag-NC and EO provoked a rapid bactericidal effect, corroborating a strong synergism. These findings suggest that by combining MnFe2O4/Ag-NC with essential oils, the necessary ratio of the nanocomposite to control phytopathogens can be reduced, thus minimizing the environmental release of silver.

12.
Nat Prod Res ; 36(18): 4719-4724, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34775894

RESUMO

Trifolium pratense, is a forage found worldwide, but it is negatively impacted by the clover root borer, Hylastinus obscurus. Methanolic extraction has been reported for isolating formononetin from vegetal tissues, with an antifeeding effect on H. obscurus. However, this methodology is time-consuming and also extracts other secondary metabolites, whereas enzymatic assays can provide higher specificity. Hence, the objective of this work was to determine the optimal conditions in pH, temperature, and incubation time for the activity of isoflavone synthase via a response surface model. Once these parameters were optimized, the concentration of formononetin in cultivars and experimental lines of T. pratense was evaluated enzymatically. The results showed that the best condition for developing the enzymatic assay was pH 9.1 with an incubation at 34.5 °C for 155 min. The formononetin content fluctuated between 0.74 and 1.96 mg/g of fresh weight, where Precoz-3, Precoz-1, and Superqueli-INIA presented the highest production.


Assuntos
Isoflavonas , Trifolium , Isoflavonas/química , Trifolium/química , Trifolium/metabolismo
13.
Nat Prod Res ; 36(5): 1370-1374, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33459053

RESUMO

Alkaloid profiles from Amaryllis belladonna plants collected in Chile were examined by GC-MS to assess their inhibitory activity on acetylcholinesterase (AChE) using in vitro and in silico methodologies. The alkaloid extract was roughly separated by column chromatography on silica gel. AChE inhibitory activities from extracts and purified alkaloids were tested by the Ellman method and a molecular docking study was performed to assess the interaction between AChE and purified alkaloids. Sixteen alkaloids were found from hexane and chloroform extracts, and three were isolated and identified as buphanidrine, acetylcaranine and lycorine. Chloroform extract showed the greatest AChE inhibitory activity with IC50 value 8.89 µg/mL, whereas buphanidrine exhibited the highest inhibitory activity, with IC50 value 17.56 µg/mL. Inhibition kinetics showed that buphanidrine acts as a mixed inhibitor and molecular docking supports this inhibition mechanism. Overall, our study supports the potential use of A. belladonna as an alkaloid source with AChE inhibitory activity.[Formula: see text].


Assuntos
Acetilcolinesterase , Atropa belladonna , Acetilcolinesterase/química , Chile , Inibidores da Colinesterase/química , Simulação de Acoplamento Molecular , Extratos Vegetais/química
14.
Molecules ; 26(22)2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34834029

RESUMO

Haematobia irritans is a cosmopolitan obligate blood-feeding ectoparasite of cattle and is the major global pest of livestock production. Currently, H. irritans management is largely dependent on broad-spectrum pesticides, which has led to the development of insecticide resistance. Thus, alternative control methods are needed. Essential oils have been studied as an alternative due to their wide spectrum of biological activities against insects. Thus, the main aim of this study was to evaluate the insecticidal, repellent and antifeedant activity of the essential oils from Blepharocalyx cruckshanksii leaves and Pilgerodendron uviferum heartwood against horn flies in laboratory conditions. The composition of the essential oils was analyzed using gas chromatography coupled to mass spectrometry. Accordingly, α-pinene (36.50%) and limonene (20.50%) were the principal components of the B. cruckchanksii essential oil, and δ-cadinol (24.16%), cubenol (22.64%), 15-copaenol (15.46%) and δ-cadinene (10.81%) were the most abundant compounds in the P. uviferum essential oil. Mortality of flies and feeding behavior were evaluated by non-choice tests, and olfactory response was evaluated using a Y-tube olfactometer. Both essential oils were toxic to horn flies, with LC50 values for B. cruckchanksii essential oil of 3.58 µL L-1 air at 4 h, and for P. uviferum essential oil of 9.41 µL L-1 air and 1.02 µL L-1 air at 1 and 4 h, respectively. Moreover, the essential oils exhibited spatial repellency in the olfactometer using only 10 µg of each oil, and these significantly reduced the horn fly feeding at all doses evaluated. Although further laboratory and field studies related to the insectistatic and insecticide properties of these essential oils against H. irritans are necessary, B. cruckshanksii leaves and P. uviferum heartwood essential oils are promising candidates for horn fly management.


Assuntos
Cupressaceae/química , Repelentes de Insetos , Muscidae/metabolismo , Myrtaceae/química , Óleos Voláteis , Folhas de Planta/química , Animais , Bovinos , Repelentes de Insetos/química , Repelentes de Insetos/farmacologia , Inseticidas/química , Inseticidas/farmacologia , Óleos Voláteis/química , Óleos Voláteis/farmacologia
15.
Planta ; 254(4): 66, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34491441

RESUMO

MAIN CONCLUSION: Advances in nanotechnology make it an important tool for improving agricultural production. Strong evidence supports the role of nanomaterials as nutrients or nanocarriers for the controlled release of fertilizers to improve plant growth. Scientific research shows that nanotechnology applied in plant sciences is smart technology. Excessive application of mineral fertilizers has produced a harmful impact on the ecosystem. Furthermore, the projected increase in the human population by 2050 has led to the search for alternatives to ensure food security. Nanotechnology is a promising strategy to enhance crop productivity while minimizing fertilizer inputs. Nanofertilizers can contribute to the slow and sustainable release of nutrients to improve the efficiency of nutrient use in plants. Nanomaterial properties (i.e., size, morphology and charge) and plant physiology are crucial factors that influence the impact on plant growth. An important body of scientific research highlights the role of carbon nanomaterials, metal nanoparticles and metal oxide nanoparticles to improve plant development through the modulation of physiological and metabolic processes. Modulating nutrient concentrations, photosynthesis processes and antioxidant enzyme activities have led to increases in shoot length, root development, photosynthetic pigments and fruit yield. In parallel, nanocarriers (nanoclays, nanoparticles of hydroxyapatite, mesoporous silica and chitosan) have been shown to be an important tool for the controlled and sustainable release of conventional fertilizers to improve plant nutrition; however, the technical advances in nanofertilizers need to be accompanied by modernization of the regulations and legal frameworks to allow wider commercialization of these elements. Nanofertilizers are a promising strategy to improve plant development and nutrition, but their application in sustainable agriculture remains a great challenge. The present review summarizes the current advance of research into nanofertilizers, and their future prospects.


Assuntos
Ecossistema , Desenvolvimento Vegetal , Agricultura , Fertilizantes/análise , Nanotecnologia
16.
Front Physiol ; 12: 643281, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33868009

RESUMO

Lepidoptera are used as a model for the study of insect olfactory proteins. Among them, odorant degrading enzymes (ODEs), that degrade odorant molecules to maintain the sensitivity of antennae, have received less attention. In particular, antennal esterases (AEs; responsible for ester degradation) are crucial for intraspecific communication in Lepidoptera. Currently, transcriptomic and genomic studies have provided AEs in several species. However, efforts in gene annotation, classification, and functional assignment are still lacking. Therefore, we propose to combine evidence at evolutionary, structural, and functional level to update ODEs as well as key information into an easier classification, particularly of AEs. Finally, the kinetic parameters for putative inhibition of ODEs are discussed in terms of its role in future integrated pest management (IPM) strategies.

17.
Molecules ; 26(7)2021 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-33916795

RESUMO

In terms of the domestication process in murtilla, studies have found changes in the concentration of phenolic compounds, with reduction of chemical defense of plants, depending on the change in the feeding behavior of insects. Thus, we hypothesized that the domestication of Ugni molinae decreases the content of phenolic compounds and modifies the feeding preference of Chilesia rudis larvae. Leaves of three parental ecotypes and four cultivated ecotypes were used in preference experiments to evaluate the mass gain and leaves consumption of larvae. Phenolic extracts from leaves of U. molinae were analyzed by HPLC. Identified compounds were incorporated in an artificial diet to assess their effect on mass gain, consumption, and survival of the larvae. The presence of phenolic compounds in bodies and feces was also evaluated. In terms of choice assays, larvae preferred parental ecotypes. Regarding compounds, vanillin was the most varied between the ecotypes in leaves. However, plant domestication did not show a reduction in phenolic compound concentration of the ecotypes studied. Furthermore, there was no clear relation between phenolic compounds and the performance of C. rudis larvae. Whether this was because of sequestration of some compounds by larvae is unknown. Finally, results of this study could also suggest that studied phenolic compounds have no role in the C. rudis larvae resistance in this stage of murtilla domestication process.


Assuntos
Domesticação , Lepidópteros/fisiologia , Myrtaceae/fisiologia , Animais , Bioensaio , Dieta , Ecótipo , Fezes/química , Estimativa de Kaplan-Meier , Larva/fisiologia , Fenóis/isolamento & purificação , Folhas de Planta/fisiologia , Análise de Regressão
18.
Enferm. infecc. microbiol. clín. (Ed. impr.) ; 39(3): 115-118, Mar, 2021. tab
Artigo em Espanhol | IBECS | ID: ibc-208571

RESUMO

Introducción: Las complicaciones cardiacas en pacientes con dengue no son infrecuentes y no son diagnosticadas, ya que usualmente son leves y autolimitadas. Objetivos: Caracterizar las manifestaciones cardiovasculares en pacientes hospitalizados con infección por dengue. Métodos: Se realizó un estudio epidemiológico observacional, analítico, de corte longitudinal, prospectivo, que incluyó 427 pacientes atendidos en el Hospital Docente Clínico-Quirúrgico Comandante Manuel Fajardo con diagnóstico de infección por dengue durante el periodo comprendido desde abril de 2017 hasta abril de 2018. Resultados: Las manifestaciones cardiovasculares (19,7%), principalmente los trastornos del ritmo (bradicardia sinusal [13,8%], extrasístoles auriculares [4,9%] y ventriculares [4,0%]) fueron frecuentes en pacientes con infección por dengue. La pericarditis y miocarditis se identificó en el 1,6% y 0,2%, respectivamente. Estas manifestaciones fueron autolimitadas en el 83,3% y se presentaron en los primeros días de inicio del cuadro febril en el 75,0%. La edad avanzada (OR=1,70), el sexo masculino (OR=1,94), el recuento de plaquetas disminuido (OR=1,13) y el dengue con signos de alarma (OR=3,29) se relacionaron con una mayor probabilidad de presentar manifestaciones cardiovasculares en el curso de una infección por dengue. Conclusiones: Las manifestaciones cardiovasculares en pacientes con dengue son frecuentes, y se relacionan con la edad avanzada, el sexo masculino, así como las formas severas de la enfermedad.(AU)


Introduction: Cardiac complications in dengue patients are not uncommon and are not diagnosed, since they are usually mild and self-limiting. Objectives: To characterize the cardiovascular manifestations in hospitalized patients with dengue infection. Methods: We conducted an observational, analytical, longitudinal, prospective epidemiological study, which included 427 patients treated at Manuel Fajardo Clinical-Surgical Teaching Hospital with diagnosis of dengue infection since April 2017 to April 2018. Results: Cardiovascular manifestations (19.7%), mainly heart rate disorders (sinus bradycardia [13.8%], atrial [4.9%] and ventricular [4.0%] extrasystoles) were frequent in dengue infection patients. Pericarditis and myocarditis were diagnosed in 1.6% and 0.2% respectively. These disorders were self-limiting in 83.3% of cases and occurred in the first days of the onset of fever in 75.0%. Advanced age (OR=1.70), male sex (OR=1.94), decreased platelet count (OR=1.13) and dengue with warning signs (OR=3.29) were related to a higher probability of presenting cardiovascular disorders in the course of a dengue infection. Conclusions: Cardiovascular manifestations in dengue patients are frequent, and are related to advanced age, male sex, as well as severe forms of the disease.(AU)


Assuntos
Humanos , Masculino , Feminino , Dengue/complicações , Dengue/diagnóstico , Dengue/etiologia , Doenças Cardiovasculares , Bradicardia , Complexos Atriais Prematuros , Pericardite , Miocardite , Microbiologia , Doenças Transmissíveis , Cuba , Estudos Prospectivos , Estudos Longitudinais
19.
Microbiol Res ; 247: 126726, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33640574

RESUMO

Volatile organic compounds (VOCs) emitted by microorganisms have demonstrated an important role to improve growth and tolerance against abiotic stress on plants. Most studies have used Arabidopsis thaliana as a model plant, extending to other plants of commercial interest in the last years. Interestingly, the microbial VOCs are characterized by its biodegradable structure, quick action, absence of toxic substances, and acts at lower concentration to regulate plant physiological changes. These compounds modulate plant physiological processes such as phytohormone pathways, photosynthesis, nutrient acquisition, and metabolisms. Besides, the regulation of gene expression associated with cell components, biological processes, and molecular function are triggered by microbial VOCs. Otherwise, few studies have reported the important role of VOCs for confer plant tolerance to abiotic stress, such as drought and salinity. Although VOCs have shown an efficient action to enhance the plant growth under controlled conditions, there are still great challenges for their greenhouse or field application. Therefore, in this review, we summarize the current knowledge about the technical procedures, study cases, and physiological mechanisms triggered by microbial VOCs to finally discuss the challenges of its application in agriculture.


Assuntos
Interações entre Hospedeiro e Microrganismos/fisiologia , Desenvolvimento Vegetal , Compostos Orgânicos Voláteis/metabolismo , Agricultura , Arabidopsis/metabolismo , Bactérias , Fungos , Nutrientes , Fotossíntese , Reguladores de Crescimento de Plantas , Fenômenos Fisiológicos Vegetais , Plantas/microbiologia , Salinidade , Estresse Fisiológico/fisiologia
20.
Molecules ; 26(4)2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33557353

RESUMO

Haematobia irritans is an obligate bloodsucking ectoparasite of cattle and is the global major pest of livestock production. Currently, H. irritans management is largely dependent upon broad-spectrum pesticides, which lately has led to the development of insecticide resistance. Thus, alternative control methods are necessary. Endophyte-infected grasses have been studied as an alternative due to their capability to biosynthesize alkaloids associated with anti-insect activities. Thus, the main aim of this study was to evaluate the antifeedant and repellent activity of lolines obtained from endophyte-infected tall fescue against H. irritans adults in laboratory conditions. The alkaloid extract (ALKE) was obtained by acid-base extraction. N-formyl loline (NFL) and N-acetyl loline (NAL) were isolated by preparative thin layer chromatography (pTLC) and column chromatography (CC), and the loline was prepared by acid hydrolysis of a NFL/NAL mixture. Loline identification was performed by gas chromatography coupled to mass spectrometry (GC/MS). Feeding behavior was evaluated by a non-choice test, and olfactory response was evaluated using a Y-tube olfactometer. Accordingly, all samples showed antifeedant activities. NFL was the most antifeedant compound at 0.5 µg/µL and 1.0 µg/µL, and it was statistically equal to NAL but different to loline; however, NAL was not statistically different to loline. NFL and NAL at 0.25 µg/µL were more active than loline. All samples except loline exhibited spatial repellency in the olfactometer. Thus, the little or non-adverse effects for cattle and beneficial activities of those lolines make them suitable candidates for horn fly management.


Assuntos
Alcaloides/farmacologia , Endófitos/fisiologia , Festuca/química , Festuca/microbiologia , Repelentes de Insetos/farmacologia , Muscidae/efeitos dos fármacos , Alcaloides/química , Alcaloides/isolamento & purificação , Animais , Repelentes de Insetos/química , Repelentes de Insetos/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...